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ABSTRACT

Discriminative localization is essential for fine-grained image clas-

sification task, which devotes to recognizing hundreds of subcate-

gories in the same basic-level category. Reflecting on discriminative

regions of objects, key differences among different subcategories

are subtle and local. Existing methods generally adopt a two-stage

learning framework: The first stage is to localize the discriminative

regions of objects, and the second is to encode the discriminative

features for training classifiers. However, these methods generally

have two limitations: (1) Separation of the two-stage learning is time-

consuming. (2) Dependence on object and parts annotations for dis-

criminative localization learning leads to heavily labor-consuming

labeling. It is highly challenging to address these two important

limitations simultaneously. Existing methods only focus on one

of them. Therefore, this paper proposes the discriminative local-

ization approach via saliency-guided Faster R-CNN to address the

above two limitations at the same time, and our main novelties and

advantages are: (1) End-to-end network based on Faster R-CNN is

designed to simultaneously localize discriminative regions and en-

code discriminative features, which accelerates classification speed.

(2) Saliency-guided localization learning is proposed to localize the

discriminative region automatically, avoiding labor-consuming la-

beling. Both are jointly employed to simultaneously accelerate

classification speed and eliminate dependence on object and parts

annotations. Comparing with the state-of-the-art methods on the

widely-used CUB-200-2011 dataset, our approach achieves both the

best classification accuracy and efficiency.
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Figure 1: Examples of CUB-200-2011 dataset [1]. First row

shows large variance in the same subcategory, and second

row shows small variance among different subcategories.

1 INTRODUCTION

Fine-grained image classification is a highly challenging task due to

large variance in the same subcategory and small variance among

different subcategories, subcategories, as shown in Figure 1, which

is to recognize hundreds of subcategories belonging to the same

basic-level category. These subcategories look similar in global

appearances, but have subtle differences at discriminative regions

of objects, which are crucial for classification. Therefore, most

researchers focus on localizing discriminative regions of objects to

promote the performance of fine-grained image classification.

Most existing methods [2–8] generally follow a two-stage learn-

ing framework: The first learning stage is to localize discriminative

regions of objects, and the second is to encode the discriminative

features for training classifiers. Girshick et al. [9] propose a simple

and scalable detection algorithm, called R-CNN. It generates thou-

sands of region proposals for each image via bottom-up process [10]

first. And then extracts features of objects via convolutional neural

network (CNN) to train an object detector for each class, which is

used to discriminate the probabilities of the region proposals being

objects. This framework is widely used in fine-grained classification.

Zhang et al. [2] utilize R-CNN with geometric constraints to detect

object and its parts first, and then extract features for the object and

its parts, finally train a one-versus-all linear SVM for classification.

It needs both object and parts annotations. Krause et al. [4] adopt

the box constraint of Part-based R-CNN [2] to train part detectors

with only object annotation. These methods generally have two lim-

itations: (1) Separation of the two-stage learning is time-consuming.

(2) Dependence on object and parts annotations for discriminative

localization learning leads to heavily labor-consuming labeling. It is
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highly challenging to address these two limitations simultaneously.

Existing works only focus on one of them.

For addressing the first limitation, researchers focus on the end-

to-end network. Zhang et al. [11] propose a Part-Stacked CNN

architecture, which first utilizes a fully convolutional network to

localize parts of object, and then adopts a two-stream classification

network to encode object-level and part-level features simultane-

ously. It is over two order of magnitude faster than Part-based

R-CNN [2], but relies heavily on object and parts annotations that

are labor consuming.

For addressing the second limitation, researchers focus on how

to localize the discriminative regions under the weakly supervised

setting, which means neither object nor parts annotations are used

in training or testing phase. Xiao et al. [5] propose a two-level

attention model: object-level attention is to select relevant region

proposals to a certain object, and part-level attention is to localize

discriminative parts of object. It is the first work to classify fine-

grained images without using object or parts annotations in both

training and testing phase, but still achieves promising results [12].

Simon and Rodner [7] propose a constellation model to localize

parts of object, leveraging CNN to find the constellations of neural

activation patterns. A part model is estimated by selecting part

detectors via constellation model. And then the part model is used

to extract features for classification. Zhang et al. [6] incorporate

deep convolutional filters for both parts selection and description.

He and Peng [8] integrate two spatial constraints for improving

the performance of parts selection. These methods rarely depend

on object or parts annotations, but their classification speeds are

time consuming due to the separation of localization and encoding.

Different from them, this paper proposes a discriminative local-

ization approach via saliency-guided Faster R-CNN, which is the

first attempt based on discriminative localization to simultaneously

accelerate classification speed and eliminate dependence on object

and parts annotations. Its main novelties and contributions can be

summarized as follows:

• End-to-end network. Most existing discriminative localization

based methods [5–7] generally localize discriminative regions

first, and then encode discriminative features. The separated

processes cause highly time-consuming classification. For ad-

dressing this important problem, we propose an end-to-end

network based on Faster R-CNN to accelerate the classification

speed by simultaneously localizing discriminative regions and

encoding discriminative features. Localization exploits discrim-

inative regions with subtle but distinguishing features from

other subcategories, and encoding generates representative de-

scriptions. They have synergistic effect with each other, which

further improves the classification performance.

• Saliency-guided localization learning. Existing methods as

[13] combine localization and encoding to accelerate classifi-

cation speed. However, localization learning relies heavily on

object or parts annotations, which is labor consuming. For ad-

dressing this important problem, we propose a saliency-guided

localization learning approach, which eliminates the heavy de-

pendence on object and parts annotations by localizing the dis-

criminative regions automatically. We adopt a neural network

with global average pooling (GAP) layer, which is called saliency

extraction network (SEN), to extract the saliency information

for each image. And then share convolutional weights between

SEN and Faster R-CNN to transfer knowledge of discrimina-

tive features. This takes the advantages of both SEN and Faster

R-CNN to boost the discriminative localization and avoid the

labor-consuming labeling simultaneously.

The rest of this paper is organized as follows: Section 2 presents

our approach in detail, and Section 3 introduces the experiments as

well as the results analyses. Finally Section 4 concludes this paper.

2 SALIENCY-GUIDED FASTER R-CNN

We propose a discriminative localization approach via saliency-

guided Faster R-CNN without using object or parts annotations.

Saliency-guided Faster R-CNN is an end-to-end network to localize

discriminative regions and encode discriminative features simul-

taneously, which not only achieves a notable classification perfor-

mance but also accelerates classification speed. It consists of two

components: saliency extraction network (SEN) and Faster R-CNN.

SEN extracts saliency information of each image for generating the

bounding box which is used to guide the discriminative localization

learning of Faster R-CNN. They are two localization learning stages,

and their jointly learning further achieves better performance. An

overview of our approach is shown as Figure 2.

2.1 Weakly supervised Faster R-CNN

We propose a weakly supervised Faster R-CNN to accelerate classifi-

cation speed and achieve promising results simultaneously without

using object or parts annotations. A saliency extraction network

(SEN) is proposed to generate bounding box information for Faster

R-CNN first. It takes a resized image as an input and outputs a

saliency map for generating the bounding box of discriminative re-

gion. We follow the work of Zhou et al. [14] to model this process by

utilizing global average pooling (GAP) to produce the saliency map.

We sum the feature maps of last convolutional layer with weights

to generate the saliency map for each image. Figure 3 shows some

examples of saliency maps obtained by our approach. Finally we

perform binarization operation on the saliency map with a adaptive

threshold, which is obtained via OTSU algorithm [15], and take

the bounding box that covers the largest connected area as the

discriminative region of object. For a given image I , the value of
spatial location (x ,y) in saliency map for subcategory c is defined
as follows:

Mc (x ,y) =
∑

u

wc
u fu (x ,y) (1)

where Mc (x ,y) directly indicates the importance of activation at

spatial location (x ,y) leading to the classification of an image to

subcategory c , fu (x ,y) denotes the activation of neuronu in the last

convolutional layer at spatial location (x ,y), and wc
u denotes the

weight that corresponding to subcategory c for neuron u. Instead
of using the image-level subcategory labels, we use the predicted

result as the subcategory c .
Faster R-CNN [16] is proposed to accelerate the process of detec-

tion as well as achieve promising detection performance. However,

the training phase needs ground truth bounding boxes of objects

for supervised learning, which is heavily labor consuming. In this

paper, we propose weakly supervised Faster R-CNN to localize
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Figure 2: An overview of our Saliency-guided Faster R-CNN approach. Saliency extraction network (SEN) extracts the saliency

information to provide the bounding box for training region proposal network (RPN) and Fast R-CNN, RPN produces the

region proposal to accelerate the process of proposal generation, and Fast R-CNN learns to localize the discriminative region.

The outputs show the predicted discriminative regions and subcategories.

Figure 3: Some examples of saliency maps extracted by SEN

in our Saliency-guided Faster R-CNN approach.

the discriminative region, which is guided by the saliency infor-

mation extracted by SEN. Faster R-CNN is composed by region

proposal network (PRN) and Fast R-CNN [17], both of them share

convolutional layers for better performance.

Instead of using time-consuming bottom-up process such as

selective search [10], RPN is adopted to quickly generate region

proposals of images by sliding a small network over the feature map

of last shared conolutional layer. At each sliding-window location, k

region proposals are simultaneously predicted, and they are param-

eterized relative to k anchors. We apply 9 anchors with 3 scales and

3 aspect ratios as Faster R-CNN. For training RPN, a binary class

label of being an object or not is assigned to each anchor, which

depends on the Intersection-over-Union (IoU) [18] overlap with

a ground truth bounding box of object. But in our approach, we

compute the IoU overlap with the bounding box of discriminative

region generated by SEN rather than the ground truth bounding

box of object, which avoids using the labor-consuming object and

parts annotations. And the loss function for an image is defined as:

L({pi }, {ti }) = 1

Ncls

∑

i

Lcls (pi ,p
∗
i )

+λ
1

Nr eд

∑

i

p∗i Lr eд (ti , t∗i ) (2)

where i denotes the index of an anchor in a mini-batch, pi denotes
the predicted probability of anchor i being a discriminative region,

p∗i denotes the label of being a discriminative region of object or

not depending on the bounding box t∗i generated by SEN , ti is
the predicted bounding box of discriminative region, Lcls is the

classification loss defined by log loss, and Lr eд is the regression

loss defined by the robust loss function (smooth L1) [17].
For the localization network, Fast R-CNN [17] is adopted. In

Fast R-CNN, a region of interest (RoI) pooling layer is employed

to extract a fixed-length feature vector from feature map for each

region proposal generated by RPN. And each feature vector passes

forward for two outputs: one is predicted subcategory and the other

is predicted bounding box of discriminative region. Through Faster
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R-CNN, we obtain the discriminative region and subcategory of

each image simultaneously, accelerating classification speed.

2.2 Saliency-guided localization learning

The saliency-guided localization learning schedules the training

process of SEN and Faster R-CNN to make full use of their ad-

vantages: (1) SEN learns the saliency information of image to tell

which region is important and discriminative for classification, and

saliency information guides the training of Faster R-CNN, and (2)

RPN in Faster R-CNN generates region proposals that relevant to

the discriminative regions of images, which accelerates the process

of region proposal rather than using bottom-up process as selective

search [10]. Considering that training RPN needs bounding boxes

of discriminative regions provided by SEN, and Fast R-CNN utilizes

the proposals generated by RPN, we adopt the strategy of sharing

convolutional weights between SEN and Faster R-CNN to promote

the localization learning.

First, we train the SEN. This network is first pre-trained on

the ImageNet 1K dataset [19], and then fine-tuned on the fine-

grained image classification dataset, such as CUB-200-2011 [1] in

our experiment. And then, we train the PRN. Its initial weights

of convolutional layers are cloned from SEN. Instead of fixing the

shared convolutional layers, all layers are fine-tuned in the training

phase. Besides, we train RPN and Fast R-CNN follows the strategy

in Ren et al. [16].

3 EXPERIMENTS

3.1 Dataset and evaluation metrics

We conduct experiments on the widely-used CUB-200-2011 [1]

dataset in fine-grained image classification. Our proposed Saliency-

guided Faster R-CNN approach is compared with 18 state-of-the-art

methods to verify its effectiveness.

CUB-200-2011 [1] is themostwidely-used dataset in fine-grained

image classification task, which contains 11788 images of 200 sub-

categories belonging to bird, 5994 images for training and 5794

images for testing. And each image has detailed annotations: a

image-level subcategory label, a bounding box of object, and 15

part locations. In our experiments, only image-level subcategory

label is used to train the networks.

Accuracy is adopted to comprehensively evaluate the classifica-

tion performances of our Saliency-guided Faster R-CNN approach

and compared methods, which is widely used in fine-grained image

classification [2, 6, 12], and its definition is as follow:

Accuracy =
Ra
R

(3)

whereR denotes the number of images in testing set, andRa denotes
the number of images that are correctly classified.

Intersection-over-Union (IoU) [18] is adopted to evaluate

whether the predicted bounding box of discriminative region is

a correct localization, and its formula is defined as:

IoU =
area(Bp ∩ Bдt )
area(Bp ∪ Bдt ) (4)

where Bp denotes the predicted bounding box of discriminative

region, Bдt denotes the ground truth bounding box of object, BP ∩
Bдt denotes the intersection of the predicted and ground truth

bounding boxes, and Bp ∪ Bдt denotes their union. We consider

the predicted bounding box of discriminative region is correctly

localized, if the IoU exceeds 0.5.

3.2 Details of the networks

Our Saliency-guided Faster R-CNN approach consists of three net-

works: saliency extraction network (SEN), region proposal network

(RPN) and Fast R-CNN. They are all based on 16-layer VGGNet

[20], which is widely used in image classification task. The basic

CNN can be replaced with the other CNN. SEN extracts the saliency

information of images to provide bounding boxes needed by Faster

R-CNN. For VGGNet in SEN, we remove the layers after conv5_3

and add a convolutional layer of size 3× 3, stride 1, pad 1 with 1024

neurons, which is followed by a global average pooling layer and

a softmax layer [14]. We adopt the object-level attention of Xiao

et al. [5] to select relevant image patches for data extension. And

then we utilize the extended data to fine-tune SEN for learning

discriminative features. The number of neurons in softmax layer

is set as the number of subcategories in the dataset. Faster R-CNN

shares the weights of layers before conv5_3 with SEN for better

discriminative localization as well as classification performance.

The architecture of Fast R-CNN is the same with VGGNet except

that pool5 layer is replaced by a RoI pooling layer, and has two

outputs: one is predicted subcategory and the other is predicted

bounding box of discriminative region.

At training phase, for SEN, we initialize the weights with the

network pre-trained on the ImageNet 1K dataset, and then use SGD

with a minibatch size of 20. We use a weight decay of 0.0005 with

a momentum of 0.9 and set the initial learning rate to 0.001. The

learning rate is divided by 10 every 5K iterations. We terminate

training at 35K iterations. For Faster RCNN,we initialize theweights

with the SEN, and then start SGD with a minibatch size of 128. We

use a weight decay of 0.0005 with a momentum of 0.9 and set the

initial learning rate to 0.001. We divide the learning rate by 10 at

30K iterations, and terminate training at 50K iterations.

3.3 Comparisons with state-of-the-art methods

This subsection presents the experimental results and analyses of

our Saliency-guided Faster R-CNN approach as well as the state-

of-the-art methods on the widely-used CUB-200-2011 [1] dataset.

We verify the effectiveness of our approach from accuracy and

efficiency of classification.

3.3.1 Accuracy of classification. Table 1 shows the comparison

results on CUB-200-2011 dataset at the aspect of classification ac-

curacy. Object, parts annotations and CNN used in these methods

are listed for fair comparison. Traditional methods as [29] choose

SIFT [30] as features, even using both object and parts annotations

its performance is limited and much lower than our approach. Our

approach achieves the highest classification accuracy among all

methods under the same weakly supervised setting that neither

object nor parts annotations are used in training or testing phase,

and obtains 0.45% higher accuracy than the best result of TSC [8]

(85.14% vs. 84.69%), which jointly considers two spatial constraints

in parts selection. Despite achieving better classification accuracy,

our approach is over two order of magnitude faster than TSC, due
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Table 1: Comparisons with State-of-the-art Methods on CUB-200-2011 dataset.

Method
Train Annotation Test Annotation

Accuracy (%) Net
Object Parts Object Parts

Our Saliency-guided Faster R-CNN Approach 85.14 VGGNet

TSC [8] 84.69 VGGNet

FOAF [21] 84.63 VGGNet

PD [6] 84.54 VGGNet

Bilinear-CNN [22] 84.10 VGGNet&VGG-M

NAC [7] 81.01 VGGNet

PIR [12] 79.34 VGGNet

TL Atten [5] 77.90 VGGNet

MIL [23] 77.40 VGGNet

Coarse-to-Fine [24]
√ √

82.90 VGGNet

PG Alignment [4]
√ √

82.80 VGGNet

VGG-BGLm [25]
√ √

80.40 VGGNet

Webly-supervised [26]
√ √

78.60 AlexNet

PN-CNN [27]
√ √

75.70 AlexNet

Part-based R-CNN [2]
√ √

73.50 AlexNet

SPDA-CNN [11]
√ √ √

85.14 VGGNet

Deep LAC [28]
√ √ √

84.10 AlexNet

PS-CNN [13]
√ √ √

76.20 AlexNet

PN-CNN [27]
√ √ √ √

85.40 AlexNet

POOF [29]
√ √ √ √

73.30

to the end-to-end network, as shown in Table 2. The efficiency anal-

ysis will be described in Section 3.3.2. And our approach performs

better than the method of Bilinear-CNN [22], which combines two

different CNNs: VGGNet [20] and VGG-M [31]. Its classification

accuracy is 84.10%, which is lower than our approach by 1.04%.

Furthermore, our approach even outperforms these methods using

object annotation in both training and testing phase by at least

2.24%, such as Coarse-to-Fine [24], PG Alignment [4] and VGG-

BGLm [25]. Moreover, our approach outperforms these methods

that use both object and parts annotations [2, 26]. Neither object

nor parts annotations are used in our Saliency-guided Faster R-CNN

approach, which leads fine-grained image classification to practical

application. Besides, end-to-end network in our approach simulta-

neously localizes discriminative region and encodes discriminative

feature for each image, and discriminative localization promotes

the classification performance.

3.3.2 Efficiency of classification. Experimental results at the as-

pect of efficiency on CUB-200-2011 dataset is presented in Table

2. We get the testing speed on the computer with NVIDIA TITAN

X @1417MHZ and Intel Core i7-6900K @3.2GHZ, and use frames

per second (fps) to evaluate the efficiency. Comparing with state-

of-the-art methods, our Saliency-guided Faster R-CNN approach

achieves the best performance on not only the classification ac-

curacy but also the efficiency. We split state-of-the-art methods

into two groups by the basic CNNs used in their methods: VGGNet

[20] and AlexNet [32]. Results of these methods in first group are

obtained by their authors’ source codes. Comparing with these

methods, our approach improves about 123% than Bilinear-CNN

at the aspect of classification speed (10.07 fps vs. 4.52 fps). Besides,

our classification accuracy is also 1.04% higher than Bilinear-CNN.

Even more, our approach is over two orders of magnitude faster

than these methods with two separated stages of localization and

encoding. When utilizing AlexNet as the basic network, our ap-

proach is still faster than PS-CNN [13] and improves about 19.51%,

which also utilizes AlexNet. And when applying AlexNet as basic

CNN in our approach, the classification accuracy is 73.58%. It is

noted that neither object nor parts annotations are used in our

approach, while all used in PS-CNN. The classification speed of

PS-CNN [13] is reported as 20 fps in their paper. They provide a

reference that a single CaffeNet [33] runs at 50 fps under their ex-

perimental setting (NVIDIA Tesla K80). In our experiments, a single

CaffeNet runs at 35.75 fps, so we calculate the speed of PS-CNN in

the same experimental setting with ours as 20*35.75/50=14.30 fps.

Our approach avoids the time-consuming classification process by

the design of end-to-end network, and achieves the best classifica-

tion performance by the mutual promotion between localization

and classification. This leads the fine-grained image classification

to practical application.

3.4 Effectiveness of discriminative localization

Saliency-guided localization learning is proposed to train SEN and

Faster R-CNN for improving the localization and classification per-

formance simultaneously. Since we devote to localizing the discrim-

inative region which is generally located at the object, we adopt

the IoU overlap between discriminative region and ground truth

bounding box of object to evaluate the correctness of localization.

We consider a bounding box of discriminative region to be correctly
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Table 2: Comparison of average classification speed (frames per second) with state-of-the-art methods on CUB-200-2011

dataset. The results are obtained on the computer with NVIDIA TITAN X@1417MHZ and Intel Core i7-6900K @3.2GHZ.

Methods Testing Speed (fps) Net

Our Saliency-guided Faster R-CNN Approach 10.07 VGGNet

Bilinear-CNN [22] 4.52 VGGNet&VGG-M

TSC [8] 0.34 VGGNet

TL Atten [5] 0.25 VGGNet

NAC [7] 0.10 VGGNet

Our Saliency-guided Faster R-CNN Approach 17.09 AlexNet

PS-CNN [13] 14.30 AlexNet

Table 3: Classification and localization Accuracies.

Methods Classification Accuracy(%) Localization Accuracy(%)

Our Saliency-guided Faster R-CNN Approach 85.14 46.05

SEN 77.50 44.93

Figure 4: Samples of predicted bounding boxes of discriminative regions (yellow rectangles) and ground truth bounding boxes

of objects (red rectangles) at different ranges of IoU on CUB-200-2011 dataset.

predicted if IoU with ground truth bounding box of object is larger

than 0.5. The accuracy of localization is shown in Table 3.

Our Saliency-guided Faster R-CNN approach achieves the ac-

curacy of 46.05%. Considering that neither object nor parts an-

notations are used, it is a promising result. And comparing with

“SEN” which means directly using SEN to generate bounding box,

our approach achieves improvements both in classification and

localization, which verifies the effectiveness of our saliency-guided

localization learning approach. We show some samples of predicted

bounding boxes of discriminative regions and ground truth bound-

ing boxes of objects at different ranges of IoU (e.g. 0∼0.2, 0.2∼0.4,
0.4∼0.6, 0.6∼0.8, 0.8∼1) on CUB-200-2011 dataset, as Figure 4. We

have some predicted bounding boxes whose IoUs with ground truth

bounding boxes of objects are lower than 0.5. But these predicted

bounding boxes contain discriminative regions of objects, such as

heads and bodies. It verifies the effectiveness of our approach in
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Table 4: PCL for each part of object in the CUB-200-2011 testing set.

Parts back beak belly breast crown forehead left eye left leg

PCL (%) 96.33 96.49 94.00 95.29 97.38 97.07 97.49 89.92

Parts left wing nape right eye right leg right wing tail throat average

PCL (%) 92.60 96.60 96.79 91.85 97.00 85.03 96.38 94.68

Figure 5: IoUhistogram.Abscissa denotes the IoUoverlap be-

tween predicted bounding box of discriminative region and

ground truth bounding box of object. And ordinate means

the number of testing images that have the IoU overlap at

the range.

localizing discriminative region of object for achieving better clas-

sification performance. Figure 5 shows the histogram of IoU. We

can observe that most testing images lie in the range of 0.4∼1. To
further verify the effectiveness of discriminative localization in our

approach, results are given in terms of the Percentage of Correctly

Localization (PCL) in Table 4, estimating whether the predicted

bounding box contains the parts of object or not. CUB-200-2011

dataset provides 15 part locations, which denote the pixel locations

of centers of parts. We consider our predicted bounding box contain

a part if the part location lies in the area of the predicted bounding

box. Table 4 shows that about average 94.68% of the parts located

in our predicted bounding boxes. It shows that our discriminative

localization can detect the distinguishing information of objects to

promote classification performance.

3.5 Analysis of misclassification

Figure 6 shows the classification confusion matrix for our approach,

where coordinate axes denote subcategories and different colors

denote different probabilities of misclassification. The yellow rect-

angles show the sets of subcategories with the higher probability of

misclassification. We can observe that these sets of subcategories

locate near the diagonal of the confusion matrix, which means that

these misclassification subcategories generally belong to the same

genus with small variance. The small variance is not easy to mea-

sure from the image, which leads the high challenge of fine-grained

Figure 6: Classification confusion matrix on CUB-200-2011

dataset with 200 subcategories. The yellow rectangles show

the sets of subcategories with the higher probability of mis-

classification.

image classification. Figure 7 shows some examples of the most

probably confused subcategory pairs. One subcategory is most con-

fidently classified as the other in the same row. The subcategories in

the same row look almost the same, and belong to the same genus.

For example, “Brandt Cormorant” and “Pelagic Cormorant” look

the same in the appearance, both of them have the same attributes

of black feather and long neck, and belong to the genus of “Pha-

lacrocorax”. It is extremely difficult for us to distinguish between

them.

3.6 Comparison with baselines

Our Saliency-guided Faster R-CNN approach is based on Faster-

RCNN [16], and adopts VGGNet [20] as the basic model. To verify

the effectiveness of our approach, we present the results of our

approach as well as the baselines in Table 5. “VGGNet” denotes the

result of directly using fine-tuned VGGNet, and “Faster R-CNN (gt)”

denotes the result of directly adopting Faster R-CNN with ground

truth bounding box to guide training phase. Our approach achieves

the best performance even without using object or parts annota-

tions. We adopt VGGNet as the basic model in our approach, but

its classification accuracy is only 70.42%, which is much lower than

ours. It shows that the discriminative localization has promoting

effect to classification. With discriminative localization, we find

the most important regions of images for classification, which con-

tains the key variance from other subcategories. Comparing with

“Faster R-CNN (gt)”, our approach also achieves better performance.
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Figure 7: Examples of the most confused subcategory pairs.

One subcategory ismostly confidently classified as the other

in the same row when in the testing phase.

Table 5: Comparison with baselines.

Methods Accuracy (%)

Our Saliency-guided Faster

R-CNN Approach
85.14

Ours (without shared conv layers) 83.95

Faster R-CNN (gt) 82.46

VGGNet 70.42

It is an interesting phenomenon that worth thinking about. From

the last row in Figure 4, we observe that not all the areas in the

ground truth bounding boxes are helpful for classification. Some

ground truth bounding boxes contain large area of background

noise that has less useful information and even leads to misclassi-

fication. So discriminative localization is significantly helpful for

achieving better classification performance. And comparison with

“Ours (without shared conv layers)” verifies the effectiveness of

our saliency-guided localization learning represented in Section

2.2, which promotes not only discriminative localization but also

classification.

4 CONCLUSION

In this paper, discriminative localization approach via saliency-

guided Faster R-CNN has been proposed for weakly supervised

fine-grained image classification. We first propose saliency-guided

localization learning approach to localize discriminative region au-

tomatically for each image, which uses neither object nor parts an-

notations to avoid using labor-consuming annotations. And then an

end-to-end network based on Faster R-CNN with guide of saliency

information is proposed to simultaneously localize discriminative

region and encode discriminative features, which not only achieves

a notable classification performance but also accelerates classifi-

cation speed. And combining them, we simultaneously acceler-

ate classification speed and eliminate dependence on object and

parts annotations. Comprehensive experimental results show our

Saliency-guided Faster R-CNN approach is more effective and effi-

cient compared with state-of-the-art methods on the widely-used

CUB-200-2011 dataset.

The future works lie in two aspects: First, we will focus on

learning better discriminative localization via exploiting the ef-

fectiveness of fully convolutional networks. Second, we will also

attempt to localize several discriminative regions with different

semantic meanings simultaneously, such as the head or body of

bird, to improve fine-grained image classification performance.
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